Robust development of synfire chains from multiple plasticity mechanisms
نویسندگان
چکیده
Biological neural networks are shaped by a large number of plasticity mechanisms operating at different time scales. How these mechanisms work together to sculpt such networks into effective information processing circuits is still poorly understood. Here we study the spontaneous development of synfire chains in a self-organizing recurrent neural network (SORN) model that combines a number of different plasticity mechanisms including spike-timing-dependent plasticity, structural plasticity, as well as homeostatic forms of plasticity. We find that the network develops an abundance of feed-forward motifs giving rise to synfire chains. The chains develop into ring-like structures, which we refer to as "synfire rings." These rings emerge spontaneously in the SORN network and allow for stable propagation of activity on a fast time scale. A single network can contain multiple non-overlapping rings suppressing each other. On a slower time scale activity switches from one synfire ring to another maintaining firing rate homeostasis. Overall, our results show how the interaction of multiple plasticity mechanisms might give rise to the robust formation of synfire chains in biological neural networks.
منابع مشابه
Development of Neural Circuitry for Precise Temporal Sequences through Spontaneous Activity, Axon Remodeling, and Synaptic Plasticity
Temporally precise sequences of neuronal spikes that span hundreds of milliseconds are observed in many brain areas, including songbird premotor nucleus, cat visual cortex, and primary motor cortex. Synfire chains-networks in which groups of neurons are connected via excitatory synapses into a unidirectional chain-are thought to underlie the generation of such sequences. It is unknown, however,...
متن کاملTriphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity
Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds. Previous studies hav...
متن کاملPotentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
Synfire chains are thought to underlie precisely timed sequences of spikes observed in various brain regions and across species. How they are formed is not understood. Here we analyze self-organization of synfire chains through the spike-timing dependent plasticity (STDP) of the synapses, axon remodeling, and potentiation decay of synaptic weights in networks of neurons driven by noisy external...
متن کاملDetecting synfire chain activity using massively parallel spike train recording.
The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these c...
متن کاملPotentiation Decay of Synapses and the Length Distributions of Synfire Chains Self-organized in Recurrent Neural Networks
Synfire chains are thought to underlie precisely-timed sequences of spikes observed in various brain regions and across species. How they are formed is not understood. Here we analyze self-organization of synfire chains through the spike-timing dependent plasticity (STDP) of the synapses, axon remodeling, and potentiation decay of synaptic weights in networks of neurons driven by noisy external...
متن کامل